Get Adobe Flash player
Start GMO GMO a środowisko Artykuły naukowe

Artykuły naukowe

GMO - GMO a środowisko
Pojawianie się szkodników odpornych na toksynę Bt, „superchwastów” odpornych na herbicydy, „ucieczka transgenów” do środowiska, zanieczyszczenie genetyczne odmian konwencjonalnych, etc. Szkodliwy wpływ upraw GMO na bezkręgowce wodne, glebowe i lądowe. Zubożenie gleby w pożyteczną florę bakteryjną pod wpływem herbicydów stosowanych w uprawie GMO i toksyny Bt.

1. Wolfenbarger L.L., Phifer P.R. 2000 The ecological risks and benefits of genetically engineered plants. Science. 290(5499): 2088-93.


Discussions of the environmental risks and benefits of adopting genetically engineered organisms are highly polarized between pro- and anti-biotechnology groups, but the current state of our knowledge is frequently overlooked in this debate. A review of existing scientific literature reveals that key experiments on both the environmental risks and benefits are lacking. The complexity of ecological systems presents considerable challenges for experiments to assess the risks and benefits and inevitable uncertainties of genetically engineered plants. Collectively, existing studies emphasize that these can vary spatially, temporally, and according to the trait and cultivar modified.

2. Ferré J, Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol. 2002;47:501-33. Review.

3. Griffitts JS, Aroian RV. Many roads to resistance: how invertebrates adapt to Bt toxins. Bioessays. 2005 Jun;27(6):614-24. Review.

Heckel DG, Gahan LJ, Baxter SW, Zhao JZ, Shelton AM, Gould F, Tabashnik BE. The diversity of Bt resistance genes in species of Lepidoptera. J Invertebr Pathol. 2007 Jul;95(3):192-7. Epub 2007 Mar 25. Review.

Downes S, Mahon R, Olsen K. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. J Invertebr Pathol. 2007 Jul;95(3):208-13. Review.

6. Tabashnik BE, Van Rensburg JB, Carrière Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol. 2009 Dec;102(6):2011-25. Review.


Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect pest control have been successful, but their efficacy is reduced when pests evolve resistance. Here we review the definition of field-evolved resistance, the relationship between resistance and field control problems, the theory underlying strategies for delaying resistance, and resistance monitoring methods. We also analyze resistance monitoring data from five continents reported in 41 studies that evaluate responses of field populations of 11 lepidopteran pests to four Bt toxins produced by Bt corn and cotton. After more than a decade since initial commercialization of Bt crops, most target pest populations remain susceptible, whereas field-evolved resistance has been documented in some populations of three noctuid moth species: Spodoptera frugiperda (J. E. Smith) to Cry1F in Bt corn in Puerto Rico, Busseola fusca (Fuller) to CrylAb in Bt corn in South Africa, and Helicoverpa zea (Boddie) to CrylAc and Cry2Ab in Bt cotton in the southeastern United States. Field outcomes are consistent with predictions from theory, suggesting that factors delaying resistance include recessive inheritance of resistance, abundant refuges of non-Bt host plants, and two-toxin Bt crops deployed separately from one-toxin Bt crops. The insights gained from systematic analyses of resistance monitoring data may help to enhance the durability of transgenic insecticidal crops. We recommend continued use of the longstanding definition of resistance cited here and encourage discussions about which regulatory actions, if any, should be triggered by specific data on the magnitude, distribution, and impact of field-evolved resistance.

7. Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL, Tranel PJ, Culpepper AS, Grey TL, Webster TM, Vencill WK, Sammons RD, Jiang J, Preston C, Leach JE, Westra P. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1029-34.

Jenczewski E, Ronfort J, Chèvre AM. Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ Biosafety Res. 2003 Jan-Mar;2(1):9-24. Review.


Crop-to-wild gene flow has received close attention over the past ten years in connection with the development and cultivation of transgenic crops. In this paper, we review key examples of crop/wild sympatry and overlapping flowering phenology, pollen and seed dispersal, the barriers to hybridisation and introgression, the evolution and fate of interspecific hybrids, their fitness, and the potential cost of transgenes. We pay particular attention to ways in which the evolution and divergence between crops and their wild relatives may interfere with these successive steps. Our review suggests that crop-to-weed gene flow is highly idiosyncratic and that crop gene dispersion will certainly be very difficult to preclude totally. Future directions for research should thus focus on the long-term establishment and effects of transgenes on natural communities.
9. Arnaud JF, Viard F, Delescluse M, Cuguen J. Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy lineages. Proc Biol Sci. 2003 Aug 7;270(1524):1565-71.

Gepts P, Papa R. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosafety Res. 2003 Apr-Jun;2(2):89-103.

Séralini GE, Cellier D, de Vendomois JS. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contam Toxicol. 2007 May;52(4):596-602.

Piñeyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Hernández JA, Rangel A, Hufford MB, Gepts P, Garay-Arroyo A, Rivera-Bustamante R, Alvarez-Buylla ER. 2009. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol Ecol. 18(4): 750-61.

13.   Qiust D, Chapela I. 2001. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414: 541–543.

Snow A. (2009). Unwanted transgenes re-discovered in Oaxacan maize. Molecular Ecology 18: 569-571.PDF/obrazy

15. Serratos-Hernández JA, Gómez-Olivares JL, Salinas-Arreortua N, Buendía-Rodríguez E, Islas-Gutiérrez F & de-Ita A (2007). Transgenic proteins in maize in the Soil Conservation area of Federal District, Mexico. Frontiers in Ecology and the Environment 5: 247-252.

Galeano P, Martínez Debat C, Ruibal F, Franco Fraguas L & Galván GA (2011). Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay. Environmental Biosafety Research DOI: 10.1051/ebr/2011100 Published online by Cambridge University Press: March 2011 PDF

17. Gealy DR, Mitten DH and Rutger JN (2003). Gene Flow Between Red Rice (Oryza sativa) and Herbicide-Resistant Rice (O. sativa): Implications for Weed Management. Weed Technology 17:627-645.

Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, Griffiths NA, Pokelsek J, Stephen ML 2007. Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Natl Acad Sci U S A 104(41): 16204-8

Saji H, Nakajima N, Aono M, Tamaoki M, Kubo A, Wakiyama S, Hatase Y, Nagatsu M. 2005. Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ Biosafety Res. 4(4): 217-22.

20. Yoshimura Y, Beckie HJ & Matsuo K (2006). Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ Biosafety Res. 5: 67-75.

Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M, Kubo A & Saji H (2006). Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ Biosafety Res. 5: 77-87

Bohn T., Primicerio R., Hessen D.O. & T. Traavik (2008): Reduced fitness of Daphnia magna fed a Bt-transgenic maize variety. Arch. Environ. Contam. Toxicol. 55:584-592

Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447

Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins: how specific are they and what else might they do? Biopestic Int 2(1):1–50

Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and developmental time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487.

Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomol Exp Applic 114:1–14.

Marvier, M., McCreedy, C., Regetz, J., Kareiva P. (2007): A meta-analysis of effects of Bt cotton and maize on non-target invertebrates. Science 316: 1475-1477.


Although scores of experiments have examined the ecological consequences of transgenic Bacillus thuringiensis (Bt) crops, debates continue regarding the nontarget impacts of this technology. Quantitative reviews of existing studies are crucial for better gauging risks and improving future risk assessments. To encourage evidence-based risk analyses, we constructed a searchable database for nontarget effects of Bt crops. A meta-analysis of 42 field experiments indicates that nontarget invertebrates are generally more abundant in Bt cotton and Bt maize fields than in nontransgenic fields managed with insecticides. However, in comparison with insecticide-free control fields, certain nontarget taxa are less abundant in Bt fields.

28. Meissle M, Vojtech E, Poppy GM (2005) Effects of Bt maize-fed prey on the generalist predator Poecilus cupreus L. (Coleoptera: Carabidae). Transgenic Res 14:123–132

Schmidt JEU. , Braun CU, Whitehouse LP and Angelika Hilbeck A (2009) Effects of Activated Bt Transgene Products (Cry1Ab, Cry3Bb) on Immature Stages of the Ladybird Adalia bipunctata in Laboratory Ecotoxicity Testing Arch Environ Contam Toxicol 56:221-228

Benamú MA, Schneider MI & Sánchez NE (2010). Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere 78: 871-876.

Bernal CC, Aguda RM & Cohen MB (2002). Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomological Exp. Appl. 102: 21-28.

Berenbaum MR (2001). Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc. Natl. Acad. Sci. USA 98: 11908-11912.

Bøhn T, Traavik T & Primicerio R (2010). Demographic responses of Daphnia magna fed transgenicBt-maize. Ecotoxicology 19: 419–430.

Busse MD, Powers RF, Shestak CJ, Ratcliff AW (2001). Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem. 33: 1777–1789

Castaldini M, Pietrangeli B, Santomassimo F, Landi S, Giovannetti M, Miclaus et al. (2005). Impact of Bt Corn on Rhizospheric and Soil Eubacterial Communities and on Beneficial Mycorrhizal Symbiosis in Experimental Microcosms. Applied and environmental microbiology 71: 6719-6729

Chakravarty P & Chatarpaul L (1990). Non-target effect of herbicides: I. Effect of glyphosate and hexazinone on soil microbial activity. Microbial population, and in-vitro growth of ectomycorrhizal fungi. Pestic. Sci. 28: 233–2437. 

Ponsard S, Gutierrez AP & Mills NJ (2002). Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four Heteropteran predators. Environmental Entomology 31: 1197-1205.

38. Relyea RA (2005). The lethal impact of roundup on aquatic and terrestrial amphibians. Ecological Applications 15: 1118-1124.

39. Saxena D, Flores S & Stozsky G (1999). Insecticidal toxin in root exudates from Bt corn. Nature 402: 480.

40. Saxena D, Stewart CN, Altosaar I, Shu Q & Stotzky G (2004). Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Plant Physiol. Biochem. 42: 383-387.

41. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW. Field-evolved resistance to Bt maize by western corn rootworm. PLoS One. 2011;6(7):e22629.

Przedstawiciele koncernów biotechnologicznych, nie zważając na żadne dowody, dalej twierdzą, że możliwe jest bezkonfliktowe współistnienie upraw tradycyjnych i odmian GMO. Problem superchwastów odpornych na herbicydy albo próbują ignorować („nie ma superchwastów”), albo nieoczekiwanie stwierdzają, że „jeżeli nadużywa się jednego rodzaju herbicydu, to w sposób oczywisty dojdzie do uodpornienia niektórych roślin”. Lekceważą także szkodliwość upraw GMO dla bezkręgowców wodnych, lądowych i glebowych, argumentując, że pestycydy stosowane w tradycyjnym agrobiznesie są tak samo szkodliwe.